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ABSTRACT

Fractional Order(FO) PID controller is a generalisation of traditional Integer Order(IO)

PID controller using fractional calculus. Fractional order controllers are among the emerg-

ing solutions for increasing closed-loop performance and robustness. However, they have

been applied mostly to stable processes. When applied to unstable systems, the tuning

technique uses the well-known frequency-domain procedures or complex genetic algo-

rithms.

Compared to IO PID controller, the tuning of FO PID controller is more complex

and poses several challenges particularly during real time implementation. The fractional

order controllers are not widely implemented on the real-time experiments because of the

complexity of realization. In this work the tuning and design of FO PID controller based

on design specifications such as phase margin, gain cross over frequency and robustness

to variation in the gain is proposed. The tuning procedure is given for the general case

of a class of unstable systems with pole multiplicity. The advantage of the proposed FO

controller consists in the simplicity of the tuning approach. The controllers designed are

applied in real time to a Maglev system which is a benchmark system with fast dynamics.

The experimental results provided show that the designed controller can indeed sta-

bilize the magnetic levitation system, as well as robustness against gain variations. The

overall control performance, disturbance rejection property and trajectory tracking ability

of the system using the proposed controller is validated through experimentation in Lab-

VIEW. For comparison purposes, a simple PID controller is also designed to point out the

advantages of using the proposed FO controller. Results demonstrate the effectiveness of

FO PID controller over the traditional IO PID controller. Furthermore, the future work

of the cooperative motion control system with multi-LabVIEW platforms for fractional

order control is introduced briefly.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Nowadays, fractional calculus has been widely used by more and more researchers in

many areas of science and engineering. The fractional order controllers have an ability to

improve the control performance, and increase the system robustness. Application of frac-

tional calculus is becoming a hot topic in control domain, the fractional order controller

design for the classical integer order systems as well as the Fractional order controller

design for the fractional order systems. Fractional order calculus appears at the same

time with the traditional calculus, which means that the order can be any real number.

Compared with the integral order calculus, the fractional order calculus has many advan-

tages: firstly, non-integer order calculus is an extension of classical integer order cases;

secondly, the fractional order calculus gives a better description of the systems dynamic

performance; thirdly, the fractional order system leads to more adequate modelling and

more robust control performance; fourthly, the fractional-order controllers have better

disturbance rejection ratios and less sensitivity to plant parameter variations compared

with the integral Proportional-Integral-Derivative PID controller. In fractional order PID

controller, I and D operations are fractional order, therefore besides setting the propor-

tional, derivative and integral constants Kp , Ki and Kd ,one have two more parameters:

the order of fractional integration λ and the order of fractional derivative µ. Finding an

optimal set of values for a given process (plant) calls for real parameter optimization in

five-dimensional hyperspace.

Magnetic levitation principle has wide application in modern engineering world such

as High speed Maglev trains and magnetic bearings. Maglev technology minimizes the

physical contact between the stationary and moving objects and it reduces the energy loss

due to the friction. High speed Maglev trains have already been tested in some places

such as Shanhai. The same levitation principle is used in Magnetic Bearings and the

main application includes pumps, turbines, fans and other rotating machineries. Maglev

system is inherently unstable and non-linear. Also the effect of eddy currents makes the

controller design more difficult. By using a traditional integer order PID controller, it is

hard to attain a higher closed loop bandwidth and better performance for the magnetic

levitation system. Fractional order PID controller is being presented here to attain the

above mentioned properties and also to ensure better disturbance rejection property.
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1.2 LITERATURE SURVEY

Magnetic levitation systems have received wide attention recently because of their prac-

tical importance in many engineering systems such as high-speed Maglev passenger trains,

frictionless bearings, levitation of wind tunnel models, vibration isolation of sensitive ma-

chinery, levitation of molten metal in induction furnaces, and levitation of metal slabs

during manufacturing [1].In recent years, a lot of research works have been reported for

controlling Maglev system. The feedback linearisation method had been used to design

controllers for Maglev system [2]-[3].The input-state, input-output and exact linearisation

method were used to design non-linear controllers [4]-[5].

The application of fractional order controller (FOC) has been attracting increased at-

tention in recent years [6]-[10].In general, the tuning methods for FO PID controllers are

classified into analytical, numerical, and rule-based ones [6]. This paper presented a re-

view of tuning methods found in the literature for fractional PID (also known as FPID)

controllers. Tuning methods for fractional PIDs found in the literature can be divided

into analytical, numerical and rule-based.

In [7], the controller parameters were analytically derived by solving non-linear equa-

tions fulfilling the gain/phase crossover frequency and phase/gain margin specifications.

Fractional order dynamic model could model various real materials more adequately than

integer order and provide a more adequate description of many actual dynamical pro-

cesses. Fractional order controller is naturally suitable for these fractional order models.

In this paper, a fractional order PID controller design method was proposed for a class of

fractional order system models.

The robustness to loop gain variations specification proposed in [8] had been widely

used to design FO PD and proportional - integral (PI) controllers in [9]. The merits of

analytical method are obvious; however, it is available only when the equations are few in

number and simple. Therefore, it is very difficult to obtain a complete FO PID controller

for the Maglev system by solving five complicated non-linear equations. As for the rule-

based method, it can easily calculate the controller parameters based on empirical tuning

rules. However, the controlled plant usually should be a system having an S-shaped step

response. The Maglev system is open loop unstable; its step response cannot be obtained

in the form of open loop, and thus, this method is not suitable.

2



In comparison, the numerical method is a relatively suitable option of tuning FO PID

controllers for the Maglev system in the three cases, which is usually an optimization-based

method. In [10], a fractional constrained integral gain optimization algorithm for tuning

fractional PI controllers was proposed, in which the controller parameters were obtained

by solving an optimization problem with the load disturbance constraint. Considering the

complexity of equations, the MATLAB optimization toolbox was adopted to solve this

problem. However, the sensitivity and complementary sensitivity functions of the Maglev

system in this brief are complicated and the success of this method relies heavily on initial

starting values, it is therefore very difficult to solve the non-linear optimization problem.

In [11] a new numerical search tuning method was introduced for a fractional order solid

core Magnetic Bearing system, presented the detailed tuning procedures of a numerical

search method for the FO PID controller. In practice, high-frequency noises have a

strong effect on control performance of the MB (magnetic bearing), and thus, an FO PID

controller with a low-pass filter was used in [11]. Compared with the previous numerical

tuning methods, this method decreases the difficulty in solving the non-linear optimization

problem.

A comparative study on design and tuning of integer order and fractional order PID

controllers were described in [12]. This paper provided the comparative study of Particle

Swarm Optimization based tuning of integer and fractional order Proportional-Integral-

Derivative (PID) controllers using SIMULINK.

A tuning method of fractional order proportional integral differentiation (FOPID) con-

troller for the fractional order system was discussed in [13]. In this paper, the fractional

order proportional integral differentiation controller was designed to improve performance

and robustness for a class of fractional order system, which can model many real systems

in bioengineering. The obvious advantage of using the designed controller was that it can

improve dynamic characteristics of the system.

However, most of the existing works did not consider experimental studies. The high-

light of this present work is the real time implementation of Fractional Order (FO) PID

controller on Maglev system. Both theoretical and experimental studies for a fractional

order controller designed Magnetic Levitation system was reported in [14]. However, the

controller designed in this work is different from the one considered in [14]. Also the

methodology discussed in this is simple and easy to implement.

3



1.3 OBJECTIVE

• To design a fractional order PID controller for Magnetic levitation system by a

numerical method for getting good performance and stability.

• To validate the designed controller on the real time experimental set up on LabVIEW

platform.

• To analyse the results obtained and check the robustness of the designed controller

against gain variations and by considering several operating points.

1.4 ORGANIZATION OF THE THESIS

The remaining part of this thesis is organized as follows. System description and mod-

elling is presented in Chapter 2. Chapter 3 details the Fractional Order PID controller

design , real time experimental validation of the designed controllers and Robustness

analysis. Finally Conclusions and future scope are drawn in Chapter 4.

4



CHAPTER 2

LABVIEW INTERFACED MAGNETIC LEVITATION SYSTEM

2.1 INTRODUCTION

The Maglev set up serves as a simple model of devices, which are becoming more and

more popular in recent years ie, Maglev trains and Magnetic bearings. Maglev trains have

been recently tested and some lines are already available as for example in Shanhai. Mag-

netic bearings are used in turbines for the same reason as Maglev trains are being built,

which is low friction in the bearing itself, Already many turbines are used commercially

where the rotating shaft is levitated with magnetic flux. Some other magnetic bearings

applications include pumps, fans and other rotating machines.

The magnetic levitation systems are appealing for their additional possibility of active

vibration damping. This can be done by various control algorithms implementations and

without any modifications to the mechanical parts of the whole system. The Magnetic

levitation unit allows for the design of different controllers and tests in real time using

LabVIEW environment.

2.2 SYSTEM DESCRIPTION

Magnetic levitation system is composed of two main subsystems, viz electrical and

mechanical. Apart from these two subsystems an infrared sensor is attached to mechanical

subsystem. Maglev mechanical unit is shown in Fig. 2.1. Maglev mechanical subsystem

composed of an electromagnet, steel ball and a heat sink. Electrical subsystem composed

of a i/o card,adapter cable and analogue interface board which has two AD channels and

six DA channels. The analogue interface board is used to transfer measured signal from

the system to PC and control signals from PC to system.The current through the coil

will controls the position of the ball in the mechanical unit,where as the control voltage

determines the coil current in electrical subsystem.Thus the coil voltage controls the ball

position indirectly.The entire system is encased in a rectangular enclosure which contains

three distinct sections. The upper section contains an electromagnet, made of a solenoid

coil with a steel core. The middle section consists of a chamber where the ball suspension

takes place. One of the electro magnet poles faces the top of a black post upon which a

one inch steel ball rests.

5



Figure 2.1: Maglev mechanical unit

Apart from the mechanical units, electrical units play an important role in Maglev

control. They allow measured signals to be transferred to the PC via an I/O card. The

analogue control interface is used to transfer control signals from the PC to Maglev and

back. The mechanical and electrical units provide a complete control system set up

presented in Fig. 2.2

Figure 2.2: Maglev control system

6



In order to design any control algorithms, one must first understand the physical back-

ground behind the process and carry out identification experiments. The next section

explains the modelling process of Magnetic levitation

2.3 SYSTEM MODEL

For the design of any controller, the first step involves the analysis of physical back-

ground behind the whole process. So plant modelling is the first step in every control

project.For the design of controller the Maglev model is shown in Fig. 2.3.

Figure 2.3: Maglev phenomenological model

The Maglev model is non-linear in which coil current (i) and ball distance from the coil

(x) are the two system states. In order to design a stabilising controller, the mathematical

non-linear model is linearised around the equilibrium point.In addition to this the free

body diagram of Magnetic levitation system is given in Fig. 2.4

Figure 2.4: Free body diagram of Magnetic levitation system

7



According to the Maglev system model shown in Fig. 2.3 the non-linear model can be

derived as follows, The gravitational force on the ball can be written as:

Fg = mb.g (2.1)

where mb is the mass of the steel ball [kg], g = 9.81 is the gravitational speed constant

[m/s2], The force generated by the electromagnet (levitation force) can be written as:

Fem = −k1
i2

x2
(2.2)

Where x is the distance [m], ẍ is the acceleration of the permanent magnet [m/s2]and

k1 is the constant depends on electromagnet parameters (magnetic force constant). The

total force experienced by steel ball is given by:

Fg + Fem = mb.g − k1
i2

x2
(2.3)

By Newton’s law,the non-linear model can obtained as follows:

mb.ẍ = Fg + Fem

mb.ẍ = mb.g − k1
i2

x2
(2.4)

To present the full phenomenological model, a relation between the control voltage u

and the coil current would have to be introduced analysing the whole Maglev circuitry.

However Maglev is equipped with an inner control loop providing a current proportional

to the control voltage that is generated for control purposes. The relation among the coil

current and control voltage is given by:

i = k2.u (2.5)

The equations 2.4 and 2.5 constitute the non-linear model.Here the control signal is

bounded as [-5V to +5V ] Maglev is a single input single output plant (Fig. 2.5). Po-

sition is the output and voltage is the control signal.

Figure 2.5: Maglev model for position control

8



2.4 SYSTEM PARAMETERS

The system parameters are shown in Table. 2.1 [15].

TABLE 2.1: System parameters

Symbol Description Value

Lc Coil inductance 412.5mH

Rc Coil Resistance 10ohm

Nc No of turns in the coil 2450

Lc coil length 0.0825m

rc Coil steel core radius 0.008m

Rs Current sense resistance 1ohm

Km Electromagnet force constant 6.5308 ∗ 10−5 Nm2/A2

rb steel ball radius 1.27 ∗ 10−2 m

Mb Steel ball mass 0.021kg

Kb Ball position sensor sensitivity 2.83 ∗ 10−3 m/V

g Gravitational constant 9.81 m/s2

2.5 MODEL LINEARIZATION

To carry out the design of linear controller, the non-linear plant is linearised about an

equilibrium point,the point at which the system will converge as time tends to infinity. The

non-linear system equations are linearised around the operating point of x0 = 1.54[cm]

(the position expressed in volts), u0 = 2.56[V ].

From the equation 2.4

ẍ = g − f(u, x) (2.6)

f(u, x) = k
u2

mbx2
(2.7)

equilibrium point can be evaluated from

g − f(u, x) = 0→ u0, x0 (2.8)

By linearisation

ẍ = −∂f(u, x)

∂u
.∆i− ∂f(u, x)

∂u
.∆x

∣∣
u0,x0

(2.9)

For the electromagnetic subsystem, the relation between the voltage and the current in

2.5 is used, leading to the final transfer function for the magnetic levitation system.

9



Applying Laplace transform to the linearised 2.9 leads to

s2∆X = −Kt∆u+Kx∆X (2.10)

∆X(s2 −Kx) = −Kt∆U (2.11)

which leads to the final transfer function

∆X(s)

∆U(s)
=
−Kt

s2 −Kx

(2.12)

where Kt = 2mg/u0 and Kx = 2mg/x0

The open loop transfer function of a Maglev system is a type zero, second order system.

The two open loop poles of the system are located at s = ±
√
Kt which indicates that the

open loop system is unstable due to location of poles on the right half of the s plane.

By substituting the parameter values as mb = 0.021kg, x0 = 1.54cm, u0 = 2.56v, g =

9.81m/s2, Plant transfer function is obtained as:

P (s) =
∆X(s)

∆U(s)
=

−16.0945

0.021s2 − 26.7545
(2.13)

2.6 HARDWARE EXPERIMENTAL DETAILS

The LabVIEW interfaced hardware system consists of LabVIEW software, DAQ (Data

acquisition) card, and peripheral Feedback equipments. The LabVIEW experimental

platform is shown in Fig. 2.6.

Figure 2.6: Architecture of LabVIEW experimental platform
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2.6.1 LabVIEW software system

LabVIEW(Laboratory Virtual Instrumentation Engineering Workbench) is a platform

and development environment for a visual programming language named ‘G’. ‘G’ is a

programming language that uses icons instead of lines of scripts to create applications.In

contrast to script − based programming languages,where instructions determine program

execution, LabVIEW uses data flow programming. The programs are called Virtual

Instruments(VIs), because their appearance and operation can imitate actual instruments,

such as oscilloscope, multimeters and so on. The VIs contain three components: the front

panel, the block diagram and the icon/connector. The front panel serves as the user

interface to control the parameters and indicate the unit step response of the system. We

need to manipulate the parameters and indicators to get the the waveform of the unit

step response,so we create the LabVIEW user interface in the front panel.The front panel

for the real time experiment is shown in fig. 2.7.

Figure 2.7: LabVIEW front panel

Block diagram contains the graphical code of the VI and the front panel objects

appear as terminals on the block diagram.The icon/connectors panel is used to represent

the VI in the block diagrams of other objects. In LabVIEW system,the control design

and simulation module integrate system simulation and real time implementation, which

is a block diagram based environment for simulation of linear and non linear continuous

time and discrete time dynamic systems. With the LabVIEW simulation module,one

can investigate the time dependent behaviour of complex engineering system, model and
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simulate any system that differential and difference equation can characterize. Mean

while,LabVIEW provides some tool kits to accomplish some complex algorithms.

2.6.2 LabVIEW Terminal Board for DAQ

The plug in hardware for data acquisition(DAQ) as the LabVIEW terminal board

was developed by Feedback Instruments. The DAQ terminal board is connected to the

computer allowing the user to retrieve digitized data values. With the DAQ terminal

board, the hardware only converts the incoming signal into a digital signal that is sent to

computer. Because there are many acquisition and analysis functions in LabVIEW, we

can use virtual instrumentation to create a customised system for test, measurement, and

industrial automation by combining different hardware and software components.

2.6.3 Peripheral Feedback Equipments

The Peripheral Feedback equipments used in the LabVIEW hardware system consists

of the Feedback Analogue interface board, Feedback Adaptor cable,Feedback Maglev me-

chanical unit.

2.7 SUMMARY

The Maglev control aspect covers one area, which is position control. LabVIEW pro-

vides various analysis methods for linear systems as far as dynamics are concerned (root

locus, frequency analysis tools − Bode diagrams, Nyquist plots, pole and zero maps etc).

The non linear mathematical model of the plant from fundamental physical laws has been

obtained and the non linear equation has been linearised around the equilibrium point

using Taylor’s series.
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CHAPTER 3

FRACTIONAL ORDER PID CONTROLLER

3.1 INTRODUCTION

PID (proportional integral derivative) controllers are the most popular controllers used

in industry because of their simplicity, performance robustness, and the availability of

many effective and simple tuning methods based on minimum plant model knowledge.

Survey has shown that 90% of control loops are of PI or PID structures .In control

engineering, a dynamic field of research and practice, better performance is constantly

demanded; therefore, developing better and simpler control algorithms is a continuing

objective.

In the past decade, there has been an increase in research efforts related to fractional

calculus and its applications to control theory. Clearly, for closed-loop control systems,

there are four situations: (1) integer order (IO) plant with IO controller; (2) IO plant

with fractional-order (FO) controller; (3) FO plant with IO controller, and (4) FO plant

with FO controller. In control practice, the fractional-order controller is more common,

because the plant model may have already been obtained as an integer-order model in the

classical sense. From an engineering point of view, improving or optimizing performance

is the major concern. Hence, our objective is to apply the fractional-order control (FOC)

to enhance the IO (integer order) dynamic system control performance.

With non integer order controllers for integer order plants, there are more flexibilities in

adjusting the gain and phase characteristics than using IO controllers. These flexibilities

make FO control a powerful tool in designing robust control system with less controller

parameters to tune. The key point is that using few tuning knobs, FO controller achieves

similar robustness achievable by using very high-order IO controllers.

Starting from the block diagram of Figure 4.1, the effects of the basic control actions

of type Ksµ for µε[−1, 1] will be examined in this section. The basic control actions

traditionally considered will be particular cases of this general case, in which:
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Figure 3.1: Block diagram of a closed-loop system with fractional-order control actions

• µ = 0: proportional action

• µ = −1: integral action

• µ = 1: derivative action

As is known, the main effects of the integral actions are those that make the system

slower, decrease its relative stability, and eliminate the steady-state error for inputs for

which the system had a finite error. These effects can be observed in the different domains.

In the time domain, the effects over the transient response consist of the decrease of the

rise time and the increase of the settling time and the overshoot. In the complex plane,

the effects of the integral action consist of a displacement of the root locus of the system

towards the right half-plane. Finally, in the frequency domain, these effects consist of

an increment of −20dB/dec in the slopes of the magnitude curves and a decrement of

π/2rad in the phase plots.

It is known that the derivative action increases the stability of the system and tends to

emphasize the effects of noise at high frequencies. In the time domain, a decrease in the

overshoot and the settling time is observed. In the complex plane, the derivative action

produces a displacement of the root locus of the system towards the left half-plane. In the

frequency domain, this action produces a constant phase lead of π/2 rad and an increase

of 20dB/dec in the slopes of the magnitude curves.

The integral-differential equation defining the control action of a fractional order PID

controller is given by

u(t) = Kpe(t) +KiD
−λe(t) +KdD

µe(t) (3.1)
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Applying Laplace transform to this equation with null initial conditions, the transfer

function of the controller can be expressed by

Cf (s) = Kp +
Ki

sλ
+Kds

µ (3.2)

In a graphical way, the control possibilities using a fractional-order PID controller are

shown in fig. 3.2, extending the four control points of the classical PID to the range of

control points of the quarter−plane defined by selecting the values of λ and µ.

Figure 3.2: Fractional-order PID vs classical PID: from points to plane: (a) integer-order
and (b) fractional-order

3.2 FRACTIONAL ORDER PID CONTROL DESIGN

The generalised block diagram of a closed loop system with Fractional Order PID

controller is shown in Fig. 3.3.

Figure 3.3: Block diagram of a closed-loop system with fractional-order controller

The loop transfer function with FO PID controller C(s) for the system P (s),

G(s) = C(s)P (s)

15



According to the forms of the fractional order systems and the FO PID controller

discussed, one can systemically design the controller following the three specifications

introduced below.

3.2.1 Design specifications

Assume that the gain crossover frequency is given by ωc and phase margin is specified

by φm . For the system stability and robustness, three specifications concerned with the

phase and the gain of open-loop transfer function as follows

• Phase margin specification

Arg[G(jωc)] = Arg[C(jωc)P (jωc] = −π + φm (3.3)

• The gain specification at the cross over frequency

|G(jωc)|dB = |C(jωc)P (jωc)| = 0 (3.4)

• Robustness to variation in the gain of the plant demands that the phase deriva-

tive w. r. t. the frequency is zero, i.e., the phase Bode plot is flat, at the gain

crossover frequency. It means that the system is more robust to gain changes and

the overshoots of the response are almost the same.

dArg[C(jω)P (jω]

dω
|ω=ωc = 0 (3.5)

3.2.2 Parameter equations based on basic specifications

For general FOPID controller

By Eulers formula [13] ejθ = cosθ + jsinθ and setting s = jω,the frequency response

of C(s) is as follows

C(jω) = Kp +Ki(jω)−λ +Kd(jω)µ

The phase and gain as follows,

Arg[C(jω] = tan−1(B/A)
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where,

B = Kdω
µsin(µπ/2)−Kiω

−λsin(λπ/2)

A = Kp +Kiω
−λcps(λπ/2) +Kdω

µcos(µπ/2)

the frequency response of the plant P (s)

P (jω) =
b0

A0 + jB0

Gain and phase of the plant

Arg[P (jω)] = −tan−1(B0/A0)

P (jω) =
b0√

A2
0 +B2

0

Then the loop frequency response G(jω)is that,

G(jω) = C(jω)p(jω)

The phase and gain of the open-loop frequency response are as follows,

Arg[G(jω] = tan−1(B/A)− tan−1(B0/A0)

|G(jω) = |C(jω)||G(jω)| = b0
√
A2 +B2√
A2

0 +B2
0

According to specification (i), the phase of G(jω) can be expressed as,

Arg[G(jω)] = −π + φm (3.6)

According to specification (iii) about the robustness to gain variations in the plant,

dArg[C(jω)P (jω]

dω
|ω=ωc = 0

= tan−1(B/A)− tan−1(B0/A0)
,
= 0 (3.7)

According to specification (ii), we can get,

|G(jω)| = |C(jωc)||P (jωc)| = 1 (3.8)
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3.2.3 Ranges of λ and µ

Based on the previous analysis, the determination of ranges of λ and µ is the key for

solving the equations. To simplify the problem, the controller 3.2 is utilized to analyze

the relation between the orders and the basic specifications. According to 3.2, the phase

of controller is

∠C(jω) = tan−1
(

Kdω
µsinµπ

2
− Ki

ωλ
sinλπ

2

Kp +Kdωµcos
µπ
2

+ Ki
ωλ
cosλπ

2

)
(3.9)

When the phase is equal to zero, the corresponding frequency, namely, ωt is calculated

as follows:

ωt =

(
Kisin

λπ
2

Kdsin
µπ
2

) 1
λ+µ

(3.10)

For the FO PID controller in fig. 3.4, only when the crossover frequency ωc exceeds ωt

, the derivative term can take a leading role and provide the phase compensation for the

Maglev system. From 3.9, the maximum phase of the controller is

lim
ω→∞

∠C(jω) =
µπ

2
(3.11)

Supposing that the phase of 3.2 and the phase of 2.13 at ωc are φf and −180◦ − φc

(φf > 0 and φc > 0), respectively (Fig. 5), to fulfil the phase specification 3.3, the

controller should meet

µπ

2
>
φfπ

2
≥ (φm + φc)π

180
(3.12)

From 3.12, a lower limit of µ can be determined. On the other hand, the gain of the loop

transfer function G(s) = C(s)P (s) at ωc is equal to 0 dB in fig. 3.4. When the frequency

exceeds ωc, the controller gain increases with a slope of 20µ dB/decade.In contrast, the

model gain decreases with a slope of −20γ dB/decade [for 2.13,γ = 2]. Obviously, the

gain of G(s) increases with µ. However, too large high frequency gain will amplify noises,

and even causes instability, So the gain slope of G(s) should at least be less than zero,

that is

20µ− 20γ < 0 (3.13)
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Therefore,a conservative range for µ is ((φm + φc)/90, γ).As to λ, to eliminate the

system steady state error, an integral term is necessary. However, the stability of system

will become worse as λ increases, and thus λ also has an upper limit. From fig. 3.4, the

integral term in the FO PID controller mainly works in the low frequency band (less than

ωt ).However, the three given specifications are not related to the low frequency band,

and thus, it is difficult to directly determine the specific upper limit from 3.3 − 3.5.To

this end, a relative conservative range of λ is taken as (0, 2).

Figure 3.4: Bode diagrams of the controller and loop transfer function.(a) Controller
(b)loop transfer function and system model

3.2.4 Determination of the optimal controller

The section presents the determination of the optimal FO PID controller by evaluating

exact performance indexes. The basic process is summarized as follows.

• The initial ranges of λ and µ are first calculated based on a group of given specifi-

cations and Maglev system model.

• Evaluate the rest of three parameters by solving 3.6, 3.7 and 3.8. At last a series of
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• The correctness of the solutions (i.e., Kp, Ki and Kd ) are verified by substituting

the parameters into design specifications.

• From the unit step response of the closed loop Maglev system,the integral of the

absolute error(IAE) is calculated within a limited range (0 to 0.5 sec) for each

feasible controller.

IAE =

∫
|e(t)|dt

• If the performance of the system with the optimal FO PID controller is satisfactory,

the process is ended. otherwise, two narrow intervals that take the λ and µ of the

optimal controller as midpoints, respectively, are constructed as the new ranges of

λ and µ and then the search step size is reset to a smaller value. The process is

repeated from 1) again until the optimal controller for the specified specifications is

obtained.

• If the above optimal controller is still not satisfying, a new group of specifications

is assigned by qualitative analysis of the relation between specifications and system

performance, and then the process is repeated from 1) again; otherwise, it is ended.

3.2.5 Integer Order PID Controller Design

To compare the FO PID and the IO PID controllers, an IO PID controller fulfilling the

same specifications is designed.

Let λ = µ = 1, the FO PID controller becomes 3.2 becomes an IO PID controller

C(s) = Kp +
Ki

s
+Kds (3.14)

The basic parameter equations 3.6, 3.7 and 3.8 can be simplified to uniquely determine

parameters of the controller.

3.2.6 Controller Design

In this section, two categories of controllers based on several groups of specific specifi-

cations are designed to stabilize the Maglev system, and the performance comparisons of

controllers are also carried out by simulation in next section.

To guarantee that the given specifications are feasible to design 3.2, the FCZ(Feasible

Control Zone) of the controller should be probably determined in advance (i.e., the (1)
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and (2) parts in the determination of the optimal controller). The FCZ is a set composed

of the (ωc, φm) specifications that the loop transfer function can stably fulfil.

The IO PID controller is a special case of the FO PID controller 3.2, and thus, the

FCZ of IO PID is smaller and included in that of 3.2 due to the flexibility of λ and µ.To

this end, only the FCZ of IO PID is determined to reduce the amount of calculation. From

the open-loop bandwidth of the Maglev model, the ranges of the (ωc, φm) specifications

to be calculated are selected as (10π, 25π) rad/s and (10◦, 50◦), respectively.

Seven groups of feasible basic specifications are selected to design the controllers for

performance analysis.Based on this rule, all the optimal controller parameters are pre-

sented in Table II.

TABLE 3.2: Optimal controller parameters for a group of specifications

parameters 1st group 2nd group 3rd group 4th group

(18.8π,16◦) (24π,20◦) (23.14π,30◦) (11.59π,40◦)

λ

FO PID

0.596 0.600 0.623 0.688

µ 0.880 0.629 0.897 0.868

Kp -1.90108 -2.387 -3.2045 -2.442

Ki -54.06 -48.827 -69.97 -46.23

Kd -0.1612 -0.481 -0.183 -0.193

Kp

IO PID

-3.14 -3.069 -2.51 -2.574

Ki -34.625 -38.0693 -8.32 -16.087

Kd -0.0340 -0.02079 -0.0519 -0.07261

3.3 STEP RESPONSE ANALYSIS

To compare system dynamic performance, the step response simulation for part of

designed controllers is implemented

3.3.1 Simulation Results

Since it has already been experimentally modelled the position control system with a

transfer function 2.13, first test the simulations in Simulink firstly, then the simulation

results can be compared with the real-time experiments on the Maglev system. Thus, the

verification of our proposed method is more effective.
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Figure 3.5: Step response analysis

22



From fig. 3.5, the system with FO PID controllers has more favourable dynamic per-

formance (smaller overshoot, oscillation, and less settling time) than that with the IO PID

controllers. In addition, the FO PID controller can help the Maglev system to achieve

a larger stability margin and a higher closed−loop bandwidth from the last group of

controllers.

3.3.2 Experimental Results

In this phase,the designed controllers are applied to the real Magnetic Levitation system

in fig 2.6

For the step response experiments a unit set-point is selected as the reference input.The

step response experimental results are shown below.For every step response corresponding

control signals are also shown below.

Figure 3.6: System step response experimental result with IOPID and FOPID ωc =
24πrad/s, φm = 200
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Figure 3.7: System step response experimental result with IOPID and FOPID ωc =
18πrad/s, φm = 160

Figure 3.8: System step response experimental result with IOPID and FOPID ωc =
59πrad/s, φm = 400
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To compare the system dynamic performance, step response experimental results are

collected.From the system step response results, the FO PID controllers have better dy-

namic control performance (less settling time and small overshoot). In addition to this

Maglev system achieve a larger stability margin with the help of designed FO PID con-

trollers. The overshoot can be minimized by increasing phase margin and gain cross over

frequency. However when the phase margin and gain cross over frequency is too high the

IO PID makes the system unstable.

3.4 DISTURBANCE REJECTION

In this phase disturbance rejection property of fractional order PID is evaluated. A

0.2V pulse is taken as disturbance input which is generated in LabVIEW environment. To

study the disturbance rejection property it is first classified into two cases,different phase

margin with constant gain cross over frequency and different gain cross over frequency

with constant phase margin. The following figures show the experimental results of the

disturbance rejection with the ωc variations.

Figure 3.9: System disturbance rejection with different ωcs by IOPID
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Figure 3.10: System disturbance rejection with different ωcs by FOPID

From the disturbance rejection results, it can be seen that the FO PID controllers have

better disturbance rejection effect to the Maglev system. With FO PID controllers, as

ωc increases the Maglev system has better response to disturbances and less overshoot.

Therefore, the advantage of the FO PID controller in improving stability margin and it

is also efficient for the low frequency disturbance rejection of the Maglev system.

Considering the similarity between the experimental and simulation results, the sim-

ulation herein is omitted and the experimental results will be presented in this section.
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Next the disturbance rejection with constant gain cross over frequency and different phase

margin.

Figure 3.11: System disturbance rejection with different φm by IO PID

Figures. 3.9,3.10,3.11,3.12, respectively show the experimental results of disturbance

rejection with the φm and ωc variations.From the results obtained, the Maglev system

with FO PID controller has much better disturbance rejection effect as compared to that

of IO PID controller.
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Figure 3.12: System disturbance rejection with different φm by FO PID

For the FO PID controller, as ωc increases,the Maglev system has a smaller overshoot

and a faster response to the disturbance. In contrast, through a larger φm slightly enlarges

the overshoot and slows the response speed, it is helpful to reduce oscillation.Therefore,

the advantage of the FO PID controller in improving the stability margin and closed loop

bandwidth is also significant for the low frequency disturbance rejection of the Maglev

system.
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3.5 TRAJECTORY TRACKING

This section is implemented for showing the efficiency of the suggested FO PID con-

troller compared to IO PID controller.The simulation and experimental validation on

Trajectory tracking is carried out in the following sections.

3.5.1 Simulation Result

The simulation results for various trajectory tracking are shown in fig. 3.13−3.15 and

their corresponding control signals in fig. 3.14−3.16

Figure 3.13: Sine wave tracking

Figure 3.14: Control signal for sine wave tracking
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Figure 3.15: Triangular wave tracking

Figure 3.16: Control signal for Triangular wave tracking

3.5.2 Experimental Result

The response of the Fractional Order PID controlled Maglev system in following various

trajectories namely sine wave and triangular wave are shown in fig. 3.17 and fig. 3.19

respectively. The control signals corresponding to each trajectory tracking are shown in

fig. 3.18 and fig. 3.20.

Figure 3.17: Sine wave tracking
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Figure 3.18: Control signal for sine wave tracking

Figure 3.19: Triangular wave tracking

Figure 3.20: Control signal for triangular wave tracking

From the above experimental results,it can be seen that the Maglev system designed

using FO PID controller is able to track various reference signals such as step, sine and

triangular waves. Also it has good disturbance rejection capability as is evident from

fig. 3.10.
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3.6 ROBUSTNESS ANALYSIS

3.6.1 Robustness against Loop gain variation

To compare the robustness, the second group of controllers is selected to present the unit

step responses of systems with 10% and 20% gain variations (i.e., from 0.8Kt to 1.2Kt).The

simulation and experimental validation on robustness against loop gain variation is shown

in following sections.

Simulation Result

Fig. 3.21−3.22 shows the system step response with gain variation. It is obvious that

the overshoots do change as the gain varies, which is different from the cases in IO PID

and FO PID. As for the reason, the differences in model, controller, and specifications

may affect the robustness. In addition, the ωc variations due to the gain variations have

a strong effect on overshoots, though φm has few variations. Anyway, for the unstable

system, this shows that the robustness to the gain variations is limited to a small range

though the flat phase is guaranteed.

Figure 3.21: Robustness against gain variation by IO PID controller(ωc = 24π and φm =
20 deg)

Figure 3.22: Robustness against gain variation by FO PID controller(ωc = 24π and
φm = 20 deg)
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Though the overshoots have changed, the Maglev system with FO PID controllers has

much better robustness than that with IO PID controllers from fig. 3.21−3.22, especially

for the larger gain variation (the Maglev system with the IO PID controller is unstable

when the gain is 0.8Kt).

Experimental Result

The experimental results of robustness to gain variation are presented in fig. 3.23-3.24.

It is obvious that the experiments and simulation have the similar results. In most cases,

the system with FO PID controller has better dynamic performance and robustness to

gain variations. In addition, the FO PID controller can increase the stability margin and

the closed-loop bandwidth, which will be essential to the active control of the Magnetic

levitation system.
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Figure 3.23: Robustness against gain variation by IO PID

34



Figure 3.24: Robustness against gain variation by FO PID
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3.6.2 Robustness analysis by considering several operating points

To test the robustness of the designed controller, several reference step changes were

considered.

Simulation Result

By considering several operating points, the simulation results with regard to robustness

is shown below. The responses for various reference input changes are shown in Fig. 3.25

− 3.26.

Figure 3.25: Robustness simulation results considering several operating points using IO
PID controller

Figure 3.26: Robustness simulation results considering several operating points using FO
PID controller

Experimental Result

By considering several operating point the experimental results results regarding with

robustness is shown below. The responses for various reference input changes are shown

in Fig. 3.27 − 3.28. The corresponding control signals are also shown in Fig. 3.29−3.30
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Figure 3.27: Robustness experimental results considering several operating points by the
IO PID controller

Figure 3.28: Robustness experimental results considering several operating points by the
FO PID controller
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Figure 3.29: Control signals for Robustness analysis by considering several operating
points by the IO PID controller

Figure 3.30: Control signals for Robustness analysis by considering several operating
points by the FO PID controller

The robustness simulation results considering several operating points given in Fig. 3.27

show a poorer closed-loop performance when compared with the results in Fig. 3.28 ob-

tained with the proposed FO PID controller. The magnetic levitation system experiences

some increased oscillations and a larger overshoot when controlled with the IO PID ,

especially away from the linearization point. The integer order PID provides a poorer

robustness compared with the FO controller.
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3.7 SUMMARY

The FO PID controller is designed for an IO Maglev system to improve the system

stability and dynamic performance. A new numerical search method is proposed for

tuning the FO PID controller. Comparing with the previous numerical tuning methods,

this method decreases the difficulty in solving the non-linear optimization problem. Both

simulation and experimental results demonstrate that the proposed method is effective and

the FO PID controller can better improve the system stability and dynamic performance

due to the introduction of two more parameters (i.e., λ and µ).
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CHAPTER 4

CONCLUSION

This project presents the design and experimental validation of Fractional Order PID

controller on a Maglev system using LabVIEW. Design is based on a set of performance

specification such as phase margin, gain cross over frequency and robustness to gain vari-

ation in plant. Experimental results demonstrate the ability of the controller in tracking

various reference signals and rejecting the constant disturbances. Also, the Fractional

Order PID controlled Maglev system exhibits good dynamic performances and improves

system stability. A comparison with the existing PID controllers is made which confines

the superiority of the proposed method. Comparing with the IO PID controller, though

the FO PID controller is more complicated in practical applications, the improvement in

system performance confirms that this cost is worthwhile.

SCOPE FOR FUTURE WORK

In future work, build a fractional order cooperative control system using multiple Lab-

VIEW hardware in the loop platforms.To cooperate two systems each other, the com-

munication is a very important issue. Fortunately, LabVIEW provides some networking

features to share data with other VIs over the network, and it can also communicate with

other applications and VIs through low level communication protocols. So use LabVIEW

as a client to subscribe the data and use features in other applications. Specifically, the

National Instruments Data Socket technology is a good way for us to build cooperative

motion control system platform. Data Socket connection of LabVIEW allows us to write

and read data through URL which just like URLs in a web browser. Therefore, just

specify a server, so others can read data from the server or write data to the server which

makes it convenient to transfer data between two machines.

Actually, LabVIEW also can connect with MATLAB/Simulink. Matlab/Simulink can

work with RTW (Real-Time Workshop) to test and develop advanced control algorithms.

However, Simulink is lack of the virtual instruments to operate, so the LabVIEW con-

necting with MATLAB/Simulink should be very practically attractive. The Simulation

Interface Tool-kit is a module provided by LabVIEW. The Tool-kit enables LabVIEW to

run and communicate with Simulink based on the internet connection.
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PUBLICATIONS

The paper titled “LabVIEW based real time implementation of Fractional Order

PID controller for a Magnetic levitation system” is to be presented at IEEE First

International conference on Power electronics, Intelligent control and Energy systems

2016, Delhi Technical University
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